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INTRODUCTION over”) to infect humans and other domestic and wild mam-

The remarkable mammals known as “bats” and “flying
foxes” (order Chiroptera [“hand wing”]) may be the most
abundant, diverse, and geographically dispersed vertebrates
(Table 1). Although a great deal is known about them, detailed
information is needed to explain the astonishing variations of
their anatomy, their lifestyles, their roles in ecosystems ecol-
ogy, and their importance as reservoir hosts of viruses of
proven or potential significance for human and veterinary
health.

Bats fly with wings which range in span from 130 mm to 2 m.
Bats of various species feed on insects, mammals, fish, blood,
fruit, and pollen. Bats of most species echolocate to navigate
and to find prey. Bats are found on all continents except Ant-
arctica. Bats also are being increasingly recognized as reservoir
hosts for viruses which can cross species barriers (i.e., “spill
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mals. Nonetheless, studies of the natural histories of bats and
their importance as reservoir hosts of zoonotic viruses largely
have been underappreciated and underfunded, except for their
role in maintaining and transmitting rabies virus. Irrespective
of the negative public perception of bats, they are critical
elements of all terrestrial biotic communities. They help con-
trol insects, reseed cut forests, and pollinate plants that provide
food for humans and other species, and their guano is used as
a fertilizer and for manufacturing soaps, gasohol, and antibi-
otics (21, 69, 83). Bat echolocation and signal processing have
provided models for sonar systems (112, 130).

Myths and misunderstandings about the roles of bats in
ecosystems and their danger to other species as hosts of rabies
virus have led to efforts to extirpate bat populations, with
serious consequent effects on insect control and crop produc-
tion, without coincidental reduction in the already low inci-
dence of rabies virus transmission by bats (93).

This paper summarizes what is known about viruses isolated
from bats. Although there is serologic evidence for infection of
bats with many viruses (see, for example, references 82 and
101), we will focus here only on the 66 viruses that have been
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TABLE 1. Species of bats (order Chiroptera), by family and genus

Family and subfamily No. of genera No. of species

Megachiroptera, Pteropodidae 42 186

Microchiroptera
Craseonycteridae 1 1
Emballonuridae 13 51
Furipteridae 2 2
Hipposideridae 9 81
Megadermatidae 4 5
Molossidae 16 100
Mormoopidae 2 10
Mystacinidae 1 2
Myzopodidae 1 1
Natalidae 3 8
Noctilionidae 1 2
Nycteridae 1 16
Phyllostomidae 56 160
Rhinolophidae 1 77
Rhinopomatidae 1 4
Thyropteridae 1 3
Vespertilionidae 47 407

isolated from or detected in bat tissues (Table 2) and the roles
of bats in maintaining and transmitting viruses. Some of these
bat-borne viruses can cause diseases of humans and other
animals. The roles played by bats in the maintenance and
transmission of viruses require consideration of the unique
characteristics that distinguish bats from all other mammals.
Examples are drawn from the extensive literature on rabies
virus in bats, as well as from recent data on the roles of bats in
the natural cycles of other viruses.

Evolution and Phylogeny of Bats

Whereas other mammals, such as certain species of rodents
(order Rodentia) and carnivores (order Carnivora), may pos-
sess traits in common with species of bats, such as the ability to
hibernate, no group of mammals shares the full suite of at-
tributes that make bats unique. Of the more than 4,600 recog-
nized species of mammals, 925 (about 20%) are bats (147).
Bats are grouped into two suborders: Megachiroptera, contain-
ing a single family, Pteropodidae (42 genera, comprising 166
species), and Microchiroptera, containing 16 bat families (135
genera, comprising 759 species) (Table 1) (138).

Bats evolved early and have changed relatively little in com-
parison with mammals of other taxa (69). Although the fossil
record of bat evolution is incomplete (77), a recent analysis of
17 nuclear genes dated the origin of chiropterans to the Eo-
cene period (52 to 50 million years ago), coincident with a
significant rise in global temperature (147). Three major mi-
crochiropteran lineages were traced to Laurasia and a fourth
to Gondwana (147). The correspondingly ancient origins de-
duced for certain zoonotic viruses maintained in bats, such as
the henipaviruses (60) and lyssaviruses (10), suggest a long
history of cospeciation. Viruses that evolved with bats may
have used for replication cellular receptors and biochemical
pathways which are conserved in mammals that evolved later
and which underwent radiation in later geological periods. If
so, these conserved cellular receptors and pathways could en-
hance the capacity for transmission of bat-associated viruses to
other mammals.
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Ability To Fly

Bats are unique among mammals in their ability to fly. Bats
fly daily in pursuit of food, and bats of many species fly long
distances during seasonal migrations (62). For example, bats of
Mpyotis spp. may travel 200 to 400 miles from their winter
hibernation sites (reviewed in reference 62), and Mexican free-
tailed bats (Tadarida brasiliensis mexicana) migrate at least 800
miles between their summer caves in Texas and New Mexico
and their overwintering sites in Mexico (36) and are otherwise
very widely distributed. In France, rabies virus infections have
been associated with the migratory routes of Nathusius’ pipis-
trelle (Pipistrellus nathusii) bats (20). Silver-haired bats (La-
sionycteris noctivagans) seasonally range from Alaska, across
Canada, and south to Texas (13). Rabies virus variants associ-
ated with silver-haired bats and the Eastern pipistrelle (Pipis-
trellus subflavus) have been identified from numerous locations
throughout the geographic range of these bats (106, 124), and
the same variants have been identified as the cause of the
majority of cases of indigenously acquired human rabies in the
United States and Canada (127).

Different patterns of migration within the same species of
bat, as occurs with relatively solitary species, such as the silver-
haired bat (69), and colonial cave-dwelling species, such as
Mexican free-tailed bats (128), may permit exchange of novel
viruses or virus variants between migrating and nonmigrating
subpopulations of conspecifics or bats of other species. A Mex-
ican free-tailed bat infected with a rabies virus variant normally
associated with hoary bats (Lasiurus cinereus), suggests inter-
species transmission (124). In the field, rabid bats of one spe-
cies have been observed to be aggressive toward bats of other
species (14). Moreover, Shankar et al. (136), in a study of the
phylogenesis of divergence of rabies viruses from bats and
terrestrial animals in Colorado, found that bats of different
species had the same genotypic variants, indicating active in-
terspecies transmission of rabies virus. They concluded that, at
least in Colorado, animal rabies occurs principally in bats and
that identification of bat-associated variants of rabies viruses in
domestic cats, gray foxes (Urocyon cinereoargenteus), and
striped skunks (Mephitis mephitis) demonstrates the impor-
tance of rabies virus spillover from bats to domestic and ter-
restrial wild vertebrates.

Torpor and Hibernation

An important trait of temperate bats of the families Vesper-
tilionidae and Rhinolophidae is their ability to enter into daily
torpor and seasonal hibernation to conserve energy during
cool nights and winter months (89). The impact of torpor and
hibernation on the pathogenesis and maintenance of viral in-
fections in bats has not been studied extensively. However,
viruses may overwinter in bats, and persistently infected bats
may shed viruses, such as lyssaviruses (family Rhabdoviridae)
or flaviviruses (family Flaviviridae) for extensive periods with-
out evidence of disease (143). Virus isolation and antibody
studies suggest that many viruses can cause persistent infec-
tions in bats (82).

When big brown bats (Eptesicus fuscus) and little brown bats
(Myotis lucifigus) were experimentally infected with Japanese
encephalitis virus (JEV) and then subjected to temperatures
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TABLE 2. Viruses isolated from naturally-infected bats worldwide

Virus

Bat species (common name)®

Family Rhabdoviridae, genus Lyssavirus
Rabies virus

Numerous bat species, essentially worldwide

Lagos bat virus

Eidolon helvum (African straw-colored fruit bat), Micropteropus pusillus (Peters’ lesser epauletted
fruit bat), Epomops dobsonii (Dobson’s epauletted fruit bat), Nycteris gambiensis (Gambian
slit-faced bat), Epomophorus wahlbergi (Wahlberg’s epauletted fruit bat)

Duvenhage virus

Australian bat lyssavirus.........ccccceceveccunee

European bat lyssavirus 1
European bat lyssavirus 2

Aravan virus

Miniopterus sp., Nyctalus noctula (noctule), Vespertilio murinus (particolored bat), Nycteris
thebaica (Egyptian slit-faced bat)

Megachiroptera (multiple Pteropus spp.), Microchiroptera sp. from Australia, Saccolaimus
flaviventris (yellow-bellied pouched bat)

Eptesicus serotinus (common serotine), Rousettus aegyptiacus (Egyptian rousette)

Myotis myotis (mouse-eared myotis), Myotis dasycneme (pond myotis), Myotis nattereri (Natterer’s
myotis), Miniopterus schreibersii (Schreibers’ long-fingered bat), Rhinolophus ferrumequinum
(greater horseshoe bat), Myotis daubentonii (Daubenton’s myotis)

Myotis blythii (lesser mouse-eared myotis)

Khujand Virus.......cceeveivnvinnnniniiiene

Irkut virus

Myotis mystacinus (whiskered myotis)
Murina leucogaster (greater tube-nosed bat)

West Caucasian bat Virus .........cceceeeeveevenene.

Family Rhabdoviridae, genus unassigned
Gossas virus

Miniopterus schreibersii (Schreibers’ long-fingered bat)

Kern Canyon Virus ........ccceeeeeeeeeenenesiecsiennne

Mount Elgon bat virus

Tadarida sp.
Myotis yumanensis (Yuma myotis)
Rhinolophus eloquens (eloquent horseshoe bat)

Oita 296 VITUS...ooeererrerereereieeereseeeesesseneenens

Family Orthomyxoviridae, genus

Influenzavirus A, influenza A virus.........

Family Paramyxoviridae, genus Henipavirus

Hendra Virus .....ccoceeeveeeevecieeneieeeeseeene

Nipah VITUS ...cooviiiiiiiiceceeee

Family Paramyxoviridae, genus Rubulavirus

MapUETA VITUS ..o

Menangle virus

Rhinolophus cornutus (little Japanese horseshoe bat)

Nyctalus noctula (noctule)

Pteropus alecto (black flying fox), Pteropus poliocephalus (gray-headed flying fox), Pteropus
scapulatus (little red flying fox), Pteropus conspicillatus (spectacled flying fox)

Pteropus hypomelanus (variable flying fox), Pteropus vampyrus (large flying fox), Pteropus lylei
(Lyle’s flying fox)

Sturnira lilium (yellow epauletted bat)
Pteropus poliocephalus (gray-headed flying fox)

TIiOMAN VITUS .ovveveerireeereereieeeeseeieeeesaeneenes

Family Paramyxoviridae, genus

undetermined, a parainfluenzavirus.......

Family Coronaviridae, SARS coronavirus .....

Family Togaviridae, genus Alphavirus

Pteropus hypomelanus (variable flying fox)

...Rousettus leschenaultia (Leschenault’s rousette)

...Rhinolophus sinicus (Chinese horseshoe bat), Rhinolophus pearsonii (Pearson’s horseshoe bat),

Rhinolophus macrotis (big-eared horseshoe bat), Rhinolophus ferrumequinum (greater
horseshoe bat)

Chikungunya virus®

Sindbis virus

Scotophilus sp., Rousettus aegyptiacus (Egyptian rousette), Hipposideros caffer (Sundevall’s leaf-
nosed bat), Chaerephon pumilus (little free-tailed bat)
Rhinolophidae sp., Hipposideridae sp.

Venezuelan equine encephalitis virus........

Family Flaviviridae, genus Flavivirus
Bukalasa bat virus

...Desmodus rotundus (vampire bat), Uroderma bilobatum (tent-making bat), Artibeus phaeotis

(pygmy fruit-eating bat)

Carey Island Virus..........cceeeecvivicininnenene.

Central European encephalitis virus..........

Dakar bat virus

Chaerephon pumilus (little free-tailed bat), Tadarida condylura (Angola free-tailed bat)

...Cynopterus brachiotis (lesser short-nosed fruit bat), Macroglossus minimus (lesser long-tongued

fruit bat)

...Unidentified bat

Chaerephon pumilus (little free-tailed bat), Taphozous perforatus (Egyptian tomb bat), Scotophilus

Entebbe bat virus

sp., Mops condylurus (Angola free-tailed bat)
Chaerephon pumilus (little free-tailed bat), Mops condylurus (Angola free-tailed bat)

Japanese encephalitis Virus ........c.c.ceeeueeuee

...Hipposideros armiger terasensis (great roundleaf bat; also known as Formosan leaf-nosed bat),

Miniopterus schreibersii (Schreibers’ long-fingered bat), Rhinolophus cornutus (little Japanese
horseshoe bat)

Jugra virus
Kyasanur Forest disease virus

Cynopterus brachiotis (lesser short-nosed fruit bat)

....Rhinolophus rouxi (rufous horseshoe bat), Cynopterus sphinx (greater short-nosed fruit bat)

Montana myotis leucoencephalitis virus......Myotis lucifugus (little brown bat)
Phnom-Penh bat Virus.........ccceeeveereeieirininnnnes Eonycteris spelaea (lesser dawn bat), Cynopterus brachyotis (lesser short-nosed fruit bat)

Continued on following page
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TABLE 2—Continued

Virus

Bat species (common name)®

Rio Bravo virus
St. Louis encephalitis virus
Saboya virus
Sokuluk virus
Tamana bat virus

Tadarida brasiliensis mexicana (Mexican free-tailed bat), Eptesicus fuscus (big brown bat)
Tadarida brasiliensis mexicana (Mexican free-tailed bat)

Nycteris gambiensis (Gambian slit-faced bat)

Vespertilio pipistrellus (probably Pipistrellus pipistrellus; common pipistrelle)

Pteronotus parnellii (Parnell’s mustached bat)

Rousettus sp., Tadarida sp.

Uganda S virus
Yokose virus

Family Bunyaviridae, genus Bunyavirus
Catu virus

Unidentified bat

Guama virus
Nepuyo virus

Molossus obscurus (possibly Molossus currentium; Thomas’ mastiff bat)
Unidentified bat
Artibeus jamaicensis (Jamaican fruit-eating bat), A. lituratus (great fruit-eating bat)

Family Bunyaviridae, genus Hantavirus,
Hantaan virus

Family Bunyaviridae, genus Phlebovirus
Rift Valley fever virus

Toscana virus

Eptesicus serotinus (common serotine), Rhinolophus ferrumequinum (greater horseshoe bat)

Micropteropus pusillus (Peters’ dwarf epauletted fruit bat), Hipposideros abae (Aba leaf-nosed
bat), Miniopterus schreibersii (Schreibers’ long-fingered bat), Hipposideros caffer (Sundevall’s
leaf-nosed bat), Epomops franqueti (Franquet’s epauletted bat), Glauconycteris argentata
(common butterfly bat)

Pipistrellus kuhlii (Kuhl’s pipistrelle)

Family Bunyaviridae, genus unassigned
Kaeng Khoi virus

Chaerephon plicatus (wrinkle-lipped free-tailed bat)

Bangui virus

Scotophilus sp., Pipistrellus sp., Tadarida sp.

Family Reoviridae, genus Orbivirus
Ife virus

Eidolon helvum (straw-colored fruit bat)
Syconycteris australis (southern blossom bat)

Japanaut virus
Fomede virus

Family Reoviridae, genus Orthoreovirus

Nycteris nana (dwarf slit-faced bat), Nycteris gambiensis (Gambian slit-faced bat)

Nelson Bay virus
Pulau virus
Broome virus

Pteropus poliocephalus (gray-headed flying fox)
Pteropus hypomelanus (variable flying fox)
Pteropus alecto (black flying fox)

Family Arenaviridae, Tacaribe virus.................

Family Herpesviridae, genus unassigned
Agua Preta virus
A cytomegalovirus

Artibeus lituratus (great fruit-eating bat), A. jamaicensis (Jamaican fruit-eating bat)

Carollia subrufa (gray short-tailed bat)
Myotis lucifugus (little brown bat)

Parixa VIrus......ooooeeeeviioieciccieccceeens
Family Picornaviridae, genus undetermined,
Juruaca Virus ...
Unclassified
Issyk-kul (Keterah virus)©

Mojui dos Campos virus
Yogue virus

Lonchophylla thomasi (Thomas’ nectar bat)

Unidentified bat

Nyctalus noctula (noctule), Eptesicus serotinus (common serotine), Pipistrellus pipistrellus
(common pipistrelle), Myotis blythii (lesser mouse-eared myotis), Rhinolophus ferrumequinum
(greater horseshoe bat), Scotophilus kuhlii (lesser Asiatic yellow house bat), Cynopterus
brachyotis (lesser short-nosed fruit bat), Eonycteris spelaea (lesser dawn bat), Chaerephon
plicatus (wrinkle-lipped free-tailed bat), Hipposideros diadema (diadem leaf-nosed bat),
Taphozous melanopogon (black-bearded tomb bat), Rhinolophus lepidus (Blyth’s horseshoe
bat), Rhinolophus horsfeldi (possibly Megaderma spasma, lesser false vampire bat)

Unidentified bat

Rousettus aegyptiacus (Egyptian rousette)

Kasokero virus

Rousettus aegyptiacus (Egyptian rousette)

“ Species names and common names are given according to N. B. Simmons (138) and other sources.
b Arthropod-borne viruses (arboviruses) isolated from or detected in bats likely were transmitted to them by arthropods, whether from another individual of that bat

species (reservoir host) or from another vertebrate
viruses or about non-arthropod-transmitted viruses

reservoir host. With few exceptions, e.g., rabies virus, relatively little is known about the natural history of these
of bats.

¢ Issyk-Kul and Keterah viruses may be synonyms.

likely to be encountered during hibernation (8 to 24°C), indi-
viduals maintained viremias for 95 to 108 days (143). Virus
titers in the blood of bats maintained at 24°C were equal to
peak viral titers at temperatures at which the bats were active.

Perhaps cold temperatures suppress immune responses that
might otherwise control viremia. Bats transferred from 8°C to
24°C 9 weeks after inoculation with JEV had transient viremias
followed by the rapid development of significant antiviral an-
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tibody titers. Nevertheless, the fact that infectious JEV was
recovered from seropositive bats 15 weeks after the shift in
temperature indicated that infection persisted (143). It is pos-
sible that neutralizing antibody has a shorter half-life in bats
than in other mammals. Tick-borne encephalitis virus and
other viruses have been isolated from bats with neutralizing
antibody, and bats are susceptible to reinfection with tick-
borne encephalitis viruses (82).

High titers of virus were obtained from brown fat of appar-
ently healthy bats inoculated with rabies virus when the bats
were kept at low temperatures (4, 142, 143). Vampire bats
(Desmodus rotundus) that survive challenge with rabies virus
may excrete virus in their saliva (1). Rabies virus was isolated
from big brown bats that were captured to establish colonies
and then died in the first month of captivity (135). Antiviral
antibodies were detected in sera of several apparently healthy
bats born in the new colony, suggesting past or subclinical
rabies virus infection (135). Mexican free-tailed bats may trans-
mit rabies virus transplacentally, as evidenced by the fact that
infectious virus was isolated from cell lines established from
fetal tissues of these bats (141). Studies of Mexican free-tailed
bats roosting at a colony in Austin, Texas, identified rabies
virus in about 70% of several hundred downed, dead, or dying
bats, which represented a relatively small proportion of the
estimated 600,000 bats in that colony. Over the study’s 2-year
duration, about 45% of apparently healthy bats from this roost
were found to have neutralizing antibody to rabies virus, sug-
gesting acquired immunity following prior exposure (101; C.
Rupprecht [U.S. Centers for Disease Control and Prevention,
Atlanta, Ga.], personal communication, 2006). Because only
one or another of many methods usually is applied in studies
of rabies virus in bats, we do not know the proportion of bats
having both viral RNA in their tissues and antibody to rabies
virus.

Temperate and tropical bats of the family Molossidae ap-
pear to be transitional between true hibernating bats and trop-
ical bats that have limited ability to enter torpor. For example,
the Western bonneted bat (Eumops perotis) enters a period of
daily torpor during the winter that is similar to the daily hiber-
nation or torpor that occurs in temperate zone bats during the
summer (89).

Long Life Span

The extreme longevity of bats, together with the possibility
that they might develop persistent infections with certain vi-
ruses, may help maintain the viruses and transmit them to
other vertebrates. Many species of small temperate bats of the
suborder Microchiroptera have life spans that exceed 25 years,
with the greatest longevity, of 35 years, documented for a little
brown bat. (On average, little brown bats weigh about 7 g.)
This extreme longevity in a small mammal places bats well
outside the traditional regression line for mammals that relates
the life expectancy (9) to the ratio of metabolic rate to body
weight (see reference 44, Fig. 45).

If bats routinely become persistently infected by certain vi-
ruses, and infectivity lasts for months or possibly years, the
impact on the basic reproductive number of infection (R,)
would be significant. R, is the expected number of newly in-
fected hosts that one infectious host will produce during its
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period of infectiousness in a large population of completely
susceptible individuals (65). Since R, is the sum of the products
of the average duration of infection, the average contact rate
between infectious and susceptible individuals, and the prob-
ability of transmission per contact between an infectious and a
susceptible individual, increased duration of infectiousness or
increased prevalence of infection in a population can dramat-
ically enhance the potential for secondary infections that em-
anate from a single infected individual. Persistent viral infec-
tions occurring among long-lived bats, coupled with their often
gregarious roosting behavior, could greatly increase the poten-
tial for intra- and interspecies transmission of viruses.

Population Size and Roosting Behavior

The frequently great population densities of bats and their
crowded roosting behavior increase the likelihood of intra- and
interspecies transmission of viral infections. Bats are the most
abundant of mammals, and except for humans and perhaps
rodents, they are the most widely distributed land mammals
(154). Certain species of bats, such as Mexican free-tailed bats,
are highly gregarious and roost in southwestern caves of the
United States, such as Carlsbad Caverns and Frio Cave, in
densely packed aggregates of approximately 300 bats per ft
(37), in populations comprising several million individuals (37,
94). Under these conditions the only example of airborne ra-
bies virus transmission was documented, either in droplets of
excreta or by small particle aerosol (38, 155).

Bat Population Structure

The demographic and spatial structuring of bat populations
is sufficiently variable to offer opportunities for viruses that
cause both acute and persistent infections to be maintained.
The potential for migratory and nonmigratory populations to
serve as a mixing vessel for viruses has already been men-
tioned. Additionally, within given regions, bat populations may
be panmictic or may exist as metapopulations, offering the
potential for seasonal virus transmission and annual outbreaks
of viral diseases as well as the potential for periodic outbreaks
among spatially discrete populations.

Colonial microchiropterans (such as Schreibers’ long-fin-
gered bat, Miniopterus schreibersii, and Mexican free-tailed
bats) typically exist in panmictic populations of hundreds of
thousands or millions of individuals and produce an annual
birth pulse (37). In theory, such large bat populations could
sustain acute viral infections that produce permanent steriliz-
ing immunity in affected individuals in a manner akin to that of
measles morbillivirus, which persists to cause annual outbreaks
only when human communities exceed 250,000 to 500,000 (16).
The persistence of measles virus within demographically het-
erogeneous human populations, whereby different communi-
ties are affected in different years, may give rise to viral per-
sistence in spatially discrete “patches,” in which infection dies
out sequentially rather than simultaneously (17).

A different pattern of social structure is present among other
colonial bats that have a metapopulation structure (consisting
of periodically interacting, spatially discrete subpopulations).
Flying foxes (Pteropus spp.) have such a structure. In this sit-
uation, the total number of individuals in the various subpopu-
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lations or “patches” must be sufficient to maintain virus circu-
lation in the metapopulation over time, while immunity or
death due to viral infection extinguishes transmission chains
within individual subpopulations. Periodic outbreaks of viral
infection and disease may then be expected among given sub-
populations in a region, once the number of susceptible indi-
viduals has recovered through births or loss of immunity, such
that the populations once again can support viral transmission
with an R, of >1. Such periodic outbreaks of acute, even fatal
viral disease are well documented for rabies virus among ter-
restrial carnivores (28) and may occur among vampire bats, as
exemplified by the so-called “migration” of rabies virus in
vampire bat populations in different regions with a 2- to 3-year
cycle (19, 126). Preliminary modeling suggests that Hendra
virus persists in Australian flying foxes in this way (H. E. Field,
unpublished data).

Given that the phylogenetic distance of Hendra virus (and
Nipah virus) from other viruses in the family Paramyxoviridae
suggests that these are ancient viruses that likely have an
evolutionary association with their flying fox hosts, it is both
intuitive and biologically plausible that the maintenance of
Hendra virus infection in flying foxes is based on the spa-
tially heterogeneous population structure and nomadic na-
ture of flying foxes.

Echolocation

Microchiropteran bats are, with rare exceptions among the
Megachiroptera (69, 71), the only land mammals that emit
sounds and then detect and characterize the time delay and
signal properties of returning echoes for the purpose of navi-
gation (echolocation). Although certain birds and several spe-
cies of megachiropterans use primitive echolocation, the de-
gree to which neural and muscular systems of bats have
evolved to produce echolocation signals, protect the individual
bat from its own potentially deafening emissions, and decipher
the information contained in returning echoes is unique. How-
ever, acoustic imaging is energy-intensive, corresponding to an
energy flux of as much as 6 X 10~° J/m? per echolocation call
(113). The intense, high-frequency echolocation signals, rang-
ing between 80 and 110 dB at a distance of 1 m from the
emitting bat, approximate the range between the noise level
produced by a coffee grinder and that produced at a rock
concert or by a jet plane at ramp (5, 113). Echolocation signals
are produced by the larynx, are powered by the muscles of the
abdominal wall of bats, and are emitted through the mouth or
nostrils (113). Production of such loud sounds also could gen-
erate droplets or small-particle aerosols of oropharyngeal flu-
ids, mucus, or saliva, enabling transmission of viruses between
individuals in close proximity. The hypothesis that rabies virus
could be expelled from the nostrils of echolocating bats was
supported by the isolation of rabies virus from mucus obtained
from naturally infected Mexican free-tailed bats (39).

Bat Immunology

Why can certain viruses infect and persist in apparently
healthy bats yet be highly pathogenic for humans and other
vertebrates? Because bats were among the earliest mammalian
species to develop, it is possible that their innate and acquired
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immune responses have important qualitative or quantitative
differences from those of the rodents and primates which have
been studied extensively. Do bats have a different set point in
their immune responses, one that results in control of the level
of virus replication without clearance of infectious virus in
order to prevent immunopathological responses in infected
tissues? Are all of the innate immune mechanisms that are
presumed to have preceded the development of acquired im-
mune responses also functional in bats? Is there affinity mat-
uration of antibodies in bats? What are the properties of cell-
mediated immune responses in bats? Significant differences in
immune responses to viral infection likely will be found among
the very large number and diversity of bat species, and it is
unlikely that immunological reagents will be reactive across all
bat species.

Very little is known about bat immune systems, although
several studies suggest that immune responses of bats have
some similarities with those of mammals that evolved after
bats. For example, immunoglobulin G (IgG), IgA, and IgM
have been purified from sera of great fruit-eating bats (Artibeus
lituratus) (96). Macrophages, B- and T-lymphocyte-like cells,
and cells expressing surface Ig were identified in the bone
marrow of Indian flying foxes (Pteropus giganteus), indicating
that lymphoid development is generally similar in bats and
other mammals (26, 131). Presumably in bats, as with other
mammals, the generation of high-titer IgG requires two events
mediated by helper T cells: class switching and affinity matu-
ration.

Serological assays that detect IgG antibodies to Hendra vi-
rus, severe acute respiratory syndrome coronavirus (SARS-
CoV)-like viruses, and Ebola viruses in bats (66, 84, 85) indi-
cate that some virus-specific adaptive T- and B-cell responses
occur despite persistent virus infection. Further studies will
require development of cell culture-based assays for examining
lymphocyte proliferation, antibody synthesis, cytokine synthe-
sis, and a host of other immunologic functions in bats.

VIRUSES FOUND IN BATS

Table 2 lists the large number of viruses that have been
isolated from or detected in bats, but most of these viruses
have not been shown to be transmitted from bats to other
animals or to cause human disease. Transmission from bats of
viruses causing highly pathogenic disease has been demon-
strated for rabies virus and related lyssaviruses, Nipah and
Hendra viruses, and inferred for SARS-CoV-like virus of bats.
The relationships of these viruses to their bat hosts and to
zoonotic human diseases is described below. Other viruses in
Table 2, such as certain alphaviruses, flaviviruses, and bunya-
viruses, may infect bats via arthropods, but it is not clear
whether bats are important reservoir hosts for these viruses.
Clearly, a great deal of additional research is needed to doc-
ument the roles of bats of different species in the natural
history of the many viruses for which these remarkable animals
can serve as hosts.

Rabies Virus

It would be impossible here to summarize the scientific lit-
erature with regard to rabies and rabies virus. Therefore, we
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will merely summarize what we believe is relevant to this re-
view. Descriptions of a disease consistent with rabies date from
4,000 years ago. The Eshnunna code invoked penalties for
knowingly allowing a “mad” dog to bite a human (12). In the
first century of this era, Celsus warned of fatal bites from
animals and suggested that such bites may contain venom (i.e.,
“virus”). However, it was not until the late 19th century that
rabies virus was studied methodically. Louis Pasteur amplified
the virus in rabbit spinal cord and prepared and administered
a vaccine for postexposure prophylaxis. Those classical studies
laid the foundations for virology and immunology.

Rabies virus (family Rhabdoviridae, genus Lyssavirus, sero-
type 1/genotype 1) is transmitted between mammals, including
bats, primarily through the bite inoculation of rabies virus
present in the saliva of infected individuals (95). The dual
characters of transmitting rabies virus and being hematopha-
gous (i.e., vampire bats) have cast a shadow on bats. Bats of
three species (Diphylla ecaudata [hairy-legged vampire bat],
Diaemus youngi (white-winged vampire bat), and Desmodus
rotundus [vampire bat]) are known vampires and have been
found to be involved in transmission of rabies virus, although
available evidence indicates that only the latter is important in
this regard (149).

Globally, a vanishingly small proportion of the approxi-
mately 55,000 annual human deaths caused by rabies virus are
caused by variants of virus associated with bats (81). Although
most cases of indigenously acquired human rabies in the
United States are caused by bat-associated variants of rabies
virus, the average of 1 or 2 cases per year over the past 2
decades indicates the rarity of these events (101). In the United
States, most rabies victims do not recall having been bitten by
a bat, which may be due to the small size of the biting animal
or to unusual circumstances leading to the bite (127).

Recent evidence suggests that all rabies virus variants that
affect terrestrial carnivores originated from cross-species trans-
mission of bat-associated variants of rabies virus (10). A mo-
lecular clock model based on genetic divergence of rabies virus
variants in bats of different species suggests that in North
America the divergence of extant bat-associated rabies viruses
from a common ancestor occurred about 1651 to 1660 C.E.
The bat rabies virus variants found in Latin America in com-
mon vampire bats (Desmodus rotundus) and in free-tailed bats
(genus Tadarida, family Mollosidae) are closest to the earliest
common ancestor. Adaptation of rabies virus variants occurred
earlier and more rapidly in bats of colonial genera (genera
Eptesicus and Myotis) than in bats of more solitary genera
(Lasionycteris, Pipistrellus, and Lasiuris) (74).

Bat variants of rabies virus sporadically spill over to infect
mammals other than humans (97). Sustained transmission of
bat variants of rabies virus within populations of red foxes on
Prince Edward Island and striped skunks in Arizona (40, 45)
proceeded until natural extinction or control by vaccination.

Lyssaviruses Related to Rabies Virus

Rabies virus is related to other lyssaviruses from bats, ro-
dents, and arthropods (137). There are seven lyssavirus geno-
types and an additional four novel genotypes recently recov-
ered from bats in Eurasia (Table 2), which probably will be
included in this genus (67, 151). Some of these viruses, most
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notably Australian bat lyssavirus (ABLV) (140), can cause a
fatal human illness indistinguishable from classic rabies (68,
129), but other lyssaviruses are not known to cause disease in
vertebrates. The diagnosis of rabies in humans and animals
traditionally was restricted to the acute fatal encephalomyelitis
caused by rabies virus serotype 1/genotype 1, but now the
disease “rabies” includes any of the fatal illnesses caused by
any lyssavirus (67).

Details of the maintenance cycles for lyssaviruses other than
rabies virus, such as Duvenhage, Lagos bat, and Mokola vi-
ruses (Table 2), are unclear (111). However, as with rabies
virus, their perpetuation is assumed to involve bite transmis-
sion, primarily involving conspecifics of the reservoir host spe-
cies, with occasional spillover to other susceptible vertebrates.
Individuals of other species have been sporadically found to be
infected by these rarely identified lyssaviruses, including a hu-
man with Duvenhage virus (100, 144), domestic cats and a dog
with Lagos bat virus (54, 80, 98), and humans, domestic cats,
and dogs with Mokola virus (15, 46, 47, 53, 110).

In May 1996, a lyssavirus was isolated from tissues of a black
flying fox (Pteropus alecto) with signs of encephalitis found
near Ballina, New South Wales, Australia (55). Six months
later, a bat handler from Rockhampton, Queensland, Austra-
lia, developed numbness and weakness in her arm and later
died from encephalitis. She had been infected with what is now
known as ABLV. In 1998, a woman from Mackay (Queens-
land, Australia) was diagnosed with ABLV infection at her
death, 2 years after having been bitten by a sick bat (68).
Protection trials with mice conducted at the U.S. Centers for
Disease Control and Prevention, Atlanta, Ga., indicated that a
rabies human diploid cell vaccine might be useful for prophy-
laxis against this virus (90). Recent serologic evidence suggests
that this virus also is present in bats in Thailand (88). Because
of the colonial nature of many bats, it is likely that this virus
may be found wherever the host bats are found.

Henipaviruses

In 1994 an outbreak of an acute respiratory illness occurred
in a human and 14 horses in Hendra, a suburb of Brisbane,
Australia. Twenty-one horses and two humans (the trainer and
a stable hand) were infected (109). Four additional outbreaks,
in 1994, 1999, and 2004, infected five horses and two humans,
killing all but one human (49, 72, 116, 123, 133).

A virus (family Paramyxoviridae, genus Henipavirus [named
after Hendra and Nipah viruses]) was shown to be the etiologic
agent of this disease (109). The natural hosts and probable
reservoirs of Hendra virus are fruit bats (“flying foxes”) of the
genus Pteropus, including the black flying fox (Pteropus alecto),
gray-headed flying fox (P. poliocephalus), little red flying fox
(P. scapulatus), and spectacled flying fox (P. conspicillatus)
(50). Little is known about the dynamics of infection in flying
foxes and how Hendra virus infection is maintained in them.

Field (50) proposed three alternative models for the main-
tenance of infection: (i) infection is enzootic in all species
throughout their distribution; (ii) infection is enzootic in a
particular species with a periodic epizootic pattern in the other
species; or (iii) infection is periodically epizootic in all these
species, persisting in a spatial or temporal mosaic across their
distribution. He contends that the apparent pattern of known
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“spillovers” from flying foxes to horses fits better with either of
the two latter hypotheses. That is, a periodic outbreak in a
local population of flying foxes results in an increased proba-
bility of spillover to horses in a specific locality during a limited
time period. An outbreak of Hendra virus infection in a local
population of flying foxes may depend on attainment of a
threshold number of susceptible flying foxes in the population
and introduction of the virus into the population from a no-
madic individual or group. These concepts are well studied for
related morbilliviruses (17, 146). A situation analogous to the
circumstances being proposed for spillover of Hendra virus to
horses has been described for rabies virus spillover to domestic
cats. In the eastern United States, there is a strong association
between the local temporal dynamics of rabies epizootics
within a reservoir host species, in this case the raccoon (Pro-
cyon lotor), which serves as the regional reservoir host for a
specific variant of rabies virus, and an increase in the risk of
rabies spillover to domestic cats (59).

Nipah virus, a paramyxovirus related to Hendra virus, was
first isolated in 1999 from pigs and adult human males affected
by fever and encephalitis, some with respiratory illness, during
a major outbreak in peninsular Malaysia and then in Singapore
(23, 24, 31). Of 265 reported human cases, 105 were fatal.
Direct contact with infected pigs was identified as the predom-
inant mode of human infection (33, 57). Most of the humans
affected in the Malaysian outbreak had a history of direct
contact with live pigs, and most were adult male Chinese pig
farmers (31, 117). More than 1 million pigs were culled to
contain the outbreak. With the knowledge that Pteropus spe-
cies bats were the likely reservoir of the closely related Hendra
virus in Australia, Malaysian bats were prioritized for surveil-
lance. Like most other countries in Southeast Asia, Malaysia
has a great diversity of bat species, including 13 species of
Megachiroptera and 60 species of Microchiroptera (99). The
large flying fox (Pteropus vampyrus) and the variable flying fox
(P. hypomelanus) were found to be natural reservoir hosts for
Nipah virus (34, 76).

Since 2001, sporadic outbreaks of Nipah virus-associated
disease in humans have been identified in Bangladesh (6, 7, 8,
73). Although many characteristics of these outbreaks were
similar to those of the Malaysian outbreak, including delayed
recognition, a primary presentation with fever and central ner-
vous system signs, and a high case fatality rate, in Bangladesh
the human cases were not associated with disease in pigs, and
there was some evidence suggesting human-to-human trans-
mission (73). Serologic surveys of domestic and wild animals
undertaken after the 2001 and 2003 outbreaks in Bangladesh
provided evidence of Nipah virus infection only in Indian flying
foxes (6, 73). Concurrent serologic surveillance of Indian flying
foxes in India in 2003 found that 54% had neutralizing anti-
bodies to Nipah virus (J. H. Epstein et al., personal commu-
nication, 2006), suggesting that Nipah virus or a closely related
virus was widespread across the range of Indian flying foxes.
Chadha et al. (25) recently reported the occurrence of Nipah
virus infections in humans in India in 2001. Neutralizing anti-
bodies to Nipah virus were found in large flying foxes in Indo-
nesia (134) and Cambodia (114), and Nipah virus was isolated
from Lyle’s flying fox (Pteropus lylei) in Cambodia (121). Thus,
the henipaviruses likely occur across the entire global distribu-
tion of pteropid bats (66).
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Available evidence suggests that Hendra and Nipah viruses
are ancient viruses that have long circulated in their natural
hosts, flying foxes (60). What precipitated the apparent recent
emergence of these viruses? Can we identify environmental
factors that altered flying fox ecology and facilitated the move-
ment of henipaviruses (and other bat-associated zoonotic
agents) beyond their natural ecological niches? Disease emer-
gence requires, in addition to the presence of an agent, an
effective bridge from the natural host to a susceptible spillover
host. Such bridges may be caused by changes to the agent, the
host, or the environment. Data on fruit bats of many species
suggest that populations are in decline throughout their range,
primarily as a result of habitat loss and hunting. In Australia,
fruit bat roosting sites recently have been increasingly redis-
tributed to urban areas (64). A scenario emerges of flying fox
populations under stress, altered foraging and behavioral pat-
terns, and virus niche expansion, all leading to closer proximity
to humans and livestock. This certainly was the case with Nipah
virus emergence (35). Chong et al. (30) suggested that the risk
of humans contracting Nipah virus infection from bats is low.
Once Nipah virus escapes its natural cycle, its epidemiologic
characteristics are quite a different story.

Menangle and Tioman Viruses

Menangle virus (family Paramyxoviridae, genus Rubulavirus)
was isolated in 1997 from stillborn piglets at a large commer-
cial piggery near Menangle in Australia (118); the bat colony
and the piggery had coexisted for 29 years before the incident.
There were large numbers of within-litter fetal deaths at a
variety of gestational ages. Most sows carried their litters to
term, but abortions occasionally occurred. Affected litters in-
cluded mummified, autolyzing, fresh stillborn, and live piglets.
Teratogenic defects frequently seen included arthrogryposis,
brachygnathia, and kyphosis. Internally, part or all of the brain
and spinal cord was absent in most piglets, and there was
malacia and nonsuppurative inflammation of the brains and
spinal cords of some. Nonsuppurative myocarditis and hepati-
tis also were present in some piglets (118).

Two of 250 humans in contact with the infected pigs had